
Learning-Based Dynamic Graph
Stream Sketch

Ding Li , Wenzhong Li(B) , Yizhou Chen, Mingkai Lin, and Sanglu Lu

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

liding@smail.nju.edu.cn, lwz@nju.edu.cn

Abstract. A graph stream is a kind of dynamic graph representation
that consists of a consecutive sequence of edges where each edge is rep-
resented by two endpoints and a weight. Graph stream is widely applied
in many application scenarios to describe the relationships in social net-
works, communication networks, academic collaboration networks, etc.
Graph sketch mechanisms were proposed to summarize large-scale graphs
by compact data structures with hash functions to support fast queries
in a graph stream. However, the existing graph sketches use fixed-size
memory and inevitably suffer from dramatic performance drops after
a massive number of edge updates. In this paper, we propose a novel
Dynamic Graph Sketch (DGS) mechanism, which is able to adaptively
extend graph sketch size to mitigate the performance degradation caused
by memory overload. The proposed DGS mechanism incorporates deep
neural network structures with graph sketch to actively detect the query
errors, and dynamically expand the memory size and hash space of a
graph sketch to keep the error below a pre-defined threshold. We con-
ducted extensive experiments on three real-world graph stream datasets,
which show that DGS outperforms the state-of-the-arts with regard to
the accuracy of different kinds of graph queries.

Keywords: Sketch · Data stream · Graph stream

1 Introduction

A graph stream [4,13] is a consecutive sequence of items, where each item rep-
resents a graph edge. Each edge is usually denoted by a tuple consisting of
two endpoints and a weight. Nowadays graph stream is ubiquitously applied to
describe the relationships in social networks, communication networks, academic

This work was partially supported by the National Key R&D Program of China (Grant
No. 2018YFB1004704), the National Natural Science Foundation of China (Grant Nos.
61972196, 61832008, 61832005), the Key R&D Program of Jiangsu Province, China
(Grant No. BE2018116), the science and technology project from State Grid Corpora-
tion of China (Contract No. SGJSXT00XTJS2100049), and the Collaborative Innova-
tion Center of Novel Software Technology and Industrialization.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12712, pp. 383–394, 2021.
https://doi.org/10.1007/978-3-030-75762-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75762-5_31&domain=pdf
http://orcid.org/0000-0003-3859-5241
http://orcid.org/0000-0002-9199-3655
https://doi.org/10.1007/978-3-030-75762-5_31

384 D. Li et al.

Fig. 1. This figure shows the change of query error with the increasing number of nodes
and edge updates using fixed-size sketch and dynamic graph sketch, respectively.

collaboration networks, etc. For example, a graph stream can be used to describe
temporal-spatial varying network traffics, or represent a dynamic social network
with increasing number of users and their social interactions. It plays an impor-
tant role since the graph topology is indispensable to many data analysis tasks
in these applications. Apparently, traditional data structures such as adjacency
matrix and the adjacency list cannot be directly adopted to store a graph stream
due to its large volume and high dynamicity.

Sketch is a compact data structure for data stream summarization. Tradi-
tional sketches such as CM-sketch [2] and CU-sketch [3] were designed to sum-
marize a stream of isolated data items, which are not suitable for graph stream
summarization due to the lack of ability to capture the connections between
items and to answer graph topology queries. To address the problem, Tang et
al. proposed a graph sketch called TCM [13]. It summarized a graph stream by
a matrix where each edge was mapped to a bucket of the matrix using a hash
function, and the edge weight was recorded in the corresponding bucket. Since
the graph sketch recorded not only the edge weight, but also the connections
of a graph, it was able to answer graph topology queries such as reachability
queries and subgraph queries. Several variants of graph sketch were proposed to
improve the query accuracy and efficiency [4,8].

However, the major drawback of the existing graph sketches is that they con-
struct a graph summarization based on a pre-defined fixed-size matrix which are
not expandable. Many real-world applications are dealing with dynamic graph
streams, i.e., the population (the nodes) of a social network may increase rapidly
and the interaction between users (the edges) may change dynamically. Apply-
ing the fixed-size graph sketch on the dynamic graph streams inevitably suffers
from poor accuracy of query results after a large number of edge updates. We

Learning-Based Dynamic Graph Stream Sketch 385

illustrate this problem in Fig. 1. The figure shows the change of the average rel-
ative error of edge queries with the number of edge updates in TCM. As can be
seen, TCM suffers from serious performance degradation during the edge updat-
ing process. At the beginning, hash collisions are rare and the query error is
relatively low. With more and more edge updates, hash collision occurs in every
buckets of TCM and the memory is overloaded. This leads to the fact that the
average relative error of edge queries becomes very high. Thus, it is desirable
for a graph sketch to have the ability of incremental expansion to avoid rapid
performance degradation and keep the relative error below a threshold.

In this paper, we propose a novel Dynamic Graph Sketch (DGS), which is
able to adaptively extend its size and redistribute hash collisions to mitigate
the performance degradation caused by overloaded memory. In contrast to the
existing graph sketches that use fixed-size memory, DGS is able to keep the query
accuracy always at a high level, no matter how many edges have been updated.
Figure 1 presents an example how DGS works and how the performance of
DGS changes with the number of edge updates. As shown in the figure, DGS
periodically predict its current query error. If the error exceeds a pre-defined
threshold, it will expand its size and simultaneously redistribute hash collisions
to reduce the query error. Then, the expanded sketch continues to record the
subsequent edges. In this way, the query error can be always limited under the
pre-defined threshold.

The main results and contributions of this paper are summarized as follows:

– We propose Dynamic Graph Sketch (DGS), a novel mechanism for graph
stream summarization. It is able to adaptively expand its size to mitigate
the performance degradation during the edge updating process, keeping the
query accuracy always at a high level. To the best of our knowledge, we are the
first to propose the dynamic graph sketch which uses adaptively incremental
memory.

– We integrate deep learning techniques into graph sketch design. Specifically,
we introduce a deep neural network (DNN) to predict a graph sketch’s query
error, and based on which we design a convolutional neural network (CNN) to
aid expanding a small-size graph sketch to a large-size one and simultaneously
mitigate hash collisions to improve graph query accuracy.

– We conduct extensive experiments on three real-world graph streams to eval-
uate the effectiveness of our proposed algorithm. The experimental results
show that DGS outperforms state-of-the-art graph sketches in terms of dif-
ferent kinds of graph queries.

2 Related Work

Data stream sketches are designed to summarize the data streams that are mod-
eled as isolated items. Thus, they cannot answer graph topology queries. C-
sketch [1] utilized multiple hash tables to store a data stream and was able to
estimate the frequencies of all the items. However, it suffered from both over-
estimation and underestimation. Cormode et al. improved the work of [1] and

386 D. Li et al.

proposed CM-sketch [2] which only suffered from overestimation. Estan et al.
designed CU-sketch [3] to improve CM-sketch’s query accuracy at the cost of
not supporting item deletions. More recently, Tang et al. proposed MV-sketch
[12] which tracked candidate heavy items inside the sketch data structure via
the idea of majority voting. Liu et al. proposed SF-sketch [9] which consisted of
both a large sketch and a small sketch to upgrade the query accuracy. Besides
designing novel data structures, some researchers proposed to utilize the power
of machine learning to optimize the performance of sketch. Later, Hsu et al. [6]
and Zhang et al. [14] proposed Learned Count-Min algorithm which combined
the traditional CM-sketch with a heavy hitter oracle to improve efficiency.

In contrast to data stream sketches, graph sketches are able to summarize
graph streams, keeping the topology of a graph and thus supporting more kinds
of queries including 1-hop precursor/successor query, reachability query, etc.
Zhao et al. designed gSketch [15], which utilized CM-sketch to support edge
query and aggregate subgraph query for a graph stream. Tang et al. proposed
TCM [13], which adopted an adjacency matrix to store the compressed graph
stream. gMatrix [8] was similar to TCM, and it used reversible hash functions to
generate graph sketches. More recently, Gou et al. proposed GSS [4], which was
the state-of-the-art for graph stream summarization. To improve query accuracy,
GSS consisted of not only an adjacency matrix, but also an adjacency list buffer,
which can avoid edges collisions to some extent and improve the query accuracy.

In summary, all the existing sketches use fixed-size memory and thus suffer
from serious performance degradation after a certain number of edge updates.
To the best of our knowledge, the dynamic graph sketch expansion problem has
not been well addressed in the past.

3 Preliminaries

In this section, we introduce some preliminaries about graph stream summariza-
tion.

Definition 1 (Graph stream). A graph stream is a consecutive sequence of
items S = {e1, e2, . . . , en}, where each item ei = (s, d, t, ω) denotes a directed
edge from node s to node d arriving at timestamp t with weight ω. Note that an
edge ei can be updated multiple times at different timestamps.

A graph stream S forms a dynamic directed graph G = (V,E) that changes
with every arrival of an edge update, where V denotes the node set and E denotes
the edge set of the graph. Since an edge ei may appear multiple times in the
graph stream S, the weight of ei is computed by an aggregation function based
on all the edge weights that share the same endpoints. Common aggregation
functions include min(·), max(·), average(·), sum(·), etc. In the rest of this
paper, we adopt sum(·) as the default aggregation function to introduce our
method.

Learning-Based Dynamic Graph Stream Sketch 387

Definition 2 (Graph sketch [13]). A graph sketch is a graph K = (VK , EK)
whose size is smaller than the original graph G = (V,E) formed by a given graph
stream. Specifically, |VK | ≤ |V | and |EK | ≤ |E|. A hash function H(·) is used
to map each node in V to a node in VK , and edge (s, d) in E is mapped to edge
(H(s),H(d)) in EK .

The graph sketch is usually implemented by an adjacency matrix M , and
each element M [i][j] in the adjacency matrix is usually called a counter.

Fig. 2. An example of using two graph sketches to summarize a graph stream.

Usually, several graph sketches will be simultaneously used to record a graph
stream to reduce the query error. The hash functions of these sketches are dif-
ferent and mutually independent. In order to better illustrate how to use a set
of graph sketches to summarize a graph stream, we give an example which is
presented in Fig. 2. As shown in the figure, two graph sketches with different
hash functions are used to summarize graph stream S. For each edge in the
graph stream, the graph sketches conduct an edge update as follows.

Edge Update: To record an edge ei = (s, d, t, ω) of the graph stream, the
graph sketch first calculates the hash values (H(s),H(d)). Then, it locates the
corresponding position M [H(s)][H(d)] in the adjacency matrix, and adds the

388 D. Li et al.

value in that position by ω. For example, to record the edge (b, c, t2, 1), graph
sketch K1 first calculates the hash values (H1(b),H1(c)) = (N2, N4), and then
the value in M1[N2][N4] is added by 1. Similarly, for graph sketch K2, the value
in M2[H2(b)][H2(c)] is added by 1.

Graph sketches usually support two basic queries: edge query and node query.

Edge Query: Given an edge ei, edge query is to return the weight of ei. To
answer this query, we can first query the weight of the edge that ei is mapped
to in all the graph sketches, obtaining a set of weights {ω1, ω2, . . . , ωm}. Then,
we return the minimum of {ω1, ω2, . . . , ωm}. For example, to query the weight
of edge (b, e), we can first map it to edge (N2, N3) of graph sketch K1, whose
weight is 1. Similarly, we can query the weight of edge (N3, N4) of graph sketch
K2, which is 2. Finally, we return min{1, 2} as the answer.

Node Query: Given a node n, node query is to return the aggregated edge
weight from node n. To answer this query, for each adjacency matrix, we can first
locate the row corresponding to node n, and then sum up the values in that row,
obtaining a set of sums {sum1, sum2, . . . , summ}. Then, we return the minimum
of {sum1, sum2, . . . , summ}. For example, to query the aggregated edge weight
from node e, we can first locate the row N3 of adjacency matrix M1, and sum
up the values in that row, which is 0 + 0 + 1 + 3 = 4. Similarly, we can sum up
the values in row N4 of adjacency matrix M2, which is 0+0+2+3 = 5. Finally,
we return min{4, 5} as the answer.

An important application of this query is to find top-k heavy nodes, i.e.
the top-k nodes with the highest aggregated weight. Together with the graph
sketches, a min-heap is usually used to maintain the top-k nodes [13].

4 Learning-Based Dynamic Graph Sketch Mechanism

In this section, we propose a learning-based dynamic graph sketch mechanism
called DGS to mitigate the performance problem of fixed-sized sketch. The pro-
posed framework is illustrated in Fig. 3. During edge updates, DGS actively
detects the query error of the graph sketch. If the error exceeds a pre-defined
threshold, it adaptively expands the sketch size and hash space to reduce hash
collisions and improve query accuracy. The framework consists of two major
components: a learning-based error detection module and a CNN-based sketch
expansion module, which are introduced in detail as follows.

4.1 Learning-Based Error Detection

Given a set of graph sketches formed after a certain number of edge updates,
we periodically detect its current query error to decide whether to expand it.
Since it is infeasible to calculate the precise error by exhausting all possible
node queries and edge queries, we construct a learning-based prediction model
to estimate the average relative error of edge queries.

Learning-Based Dynamic Graph Stream Sketch 389

Original Sketch

For every k
edge updates

Error Detection

Fully-connected
Layers

If error > δ

Expanded Sketch

Sketch Expansion

CNN

Fig. 3. The framework of dynamic graph sketch (DGS).

The proposed prediction model is illustrated in Fig. 3. It is a neural network
consisting of two fully-connected layers. It takes a set of graph sketches as input,
flattens all the counters of the graph sketches to a real-value vector, and feeds
the vector into the neural network, which outputs the predicted relative error.

The error detection model can be trained based on historical data. For exam-
ple, we can use a small percentage of the graph stream edge updates to form
several graph sketches at different timestamps, and test the edge query errors of
those graph sketches to form a labeled dataset, which can be used to train the
prediction model.

4.2 CNN-Based Graph Sketch Expansion

Given a set of graph sketches whose current query error is detected to be higher
than a pre-defined threshold, we introduce a DNN-based graph sketch expansion
module to expand its size and reduce the hash collision and query error.

Convolutional Neural Network (CNN) Architecture. Inspired by the fact
that CNN is expert in image super-resolution [5,11] and that images are usually
represented by matrices, we design a deep convolutional neural network for graph
sketch expansion. The basic idea is to design a CNN model to map low-resolution
matrices (smaller-size graph sketches) to high-resolution ones (larger-size graph
sketches) while keeping the similarities between them.

The structure of the proposed deep convolutional neural network is presented
in Fig. 4. It includes three convolutional layers and a reshaping layer. A graph
sketch with size w ×w first goes through three convolutional layers, and the last
convolutional layer outputs 4 matrices with size w × w. To form a larger graph
sketch, the reshaping layer reshapes these 4 matrices, obtaining a larger matrix
with size 2w × 2w.

Similar to the training of the error prediction model in Sect. 4.1, this net-
work can be trained using historical data as well. We use a small percentage
of edge updates to form several small-size sketches and corresponding large-size
sketches at different timestamps. A small-size sketch together with its corre-
sponding large-size sketch at the same timestamp can be used as one training
sample to train the network.

390 D. Li et al.

Fig. 4. The proposed CNN structure for graph sketch expansion.

Reshape of Counter Values. After graph sketch expansion, we can obtain a
set of large-size graph sketches. However, although the expanded graph sketches
have the similar shape as the original ones, their weights (counters) maybe not
conform with the definition of graph sketch. To better illustrate this problem,
we give an example illustrated in Fig. 5. The original graph sketch is a 2 × 2
matrix with hash function H(x) = x mod 2. After expansion, the matrix size is
4 × 4 with hash function H ′(x) = x mod 4 (the hash space is expanded both
horizontally and vertically). Therefore an edge originally mapped to cell (0, 0)
can be now mapped to four cells (0, 0), (0, 2), (2, 0), (2, 2) in the expanded
graph sketch. The sum of the weights in the four cells are 20 + 30 + 30 + 40
= 120 which is unequal to the original weight 12. According to the definition
of graph sketch, the weights of the matrix should be the counter of the graph
stream edges, so we need to reshape the weight of the expanded graph sketch
with a normalization trick.

Fig. 5. Reshape of counter values.

Generally speaking, denoted by Koriginal the original graph sketch of size
w × w and Kexpanded the expanded graph sketch of size 2w × 2w, we adopt
the following normalized formula to reshape the counter values in the expanded
graph sketch:

Kexpanded
i,j ← Koriginal

H(i),H(j) × Kexpanded
i,j

sum
(1)

where sum represents sum of the four counters expanded from the original one
which can be calculated by:

sum = Kexpanded
H(i),H(j) + Kexpanded

H(i),H(j)+w + Kexpanded
H(i)+w,H(j) + Kexpanded

H(i)+w,H(j)+w (2)

Learning-Based Dynamic Graph Stream Sketch 391

5 Performance Evaluation

5.1 Experimental Environment

We conduct extensive experiments to validate the effectiveness of the proposed
dynamic graph sketch (DGS). We compare our method with two state-of-the-
art graph sketches: TCM [13] and GSS [4]. All experiments were performed
on a desktop with Intel Core i7-7700 processors (4 cores, 8 threads), 8 GB of
memory, and NVIDIA GeForce GTX 1050 GPU. All sketches except GSS were
implemented in Java. For GSS, we used the C++ source code provided on the
Github1. For fair comparison, we disabled the buffer list of GSS since it does
not limit the memory usage. We used the PyTorch library [10] to implement our
proposed learning-based prediction and expansion model.

The experiments are based on three real-world graph stream datasets.

– lkml-reply2: The first dataset is a collection of communication records in the
network of the Linux kernel mailing list. It contains 63,399 email addresses
(nodes) and 1,096,440 communication records (edges).

– prosper-loans3: The second dataset is loans between members of the peer-
to-peer lending network at Prosper.com. Nodes represent members; edges
represent loans and are directed from lenders to borrowers. The dataset con-
tains 89,269 nodes and 3,394,979 edges.

– facebook-wosn-wall4: The third data set is the directed network of a small
subset of posts to other user’s wall on Facebook. The nodes of the network are
Facebook users, and each directed edge represents one post, linking the users
writing a post to the users whose wall the post is written on. The dataset
contains 46,952 nodes and 876,993 edges.

We adopt the following performance metrics in our experiments.

– Average relative error (ARE): measures the accuracy of the reported
weights in edge queries. Given a query q, the relative error RE(q) is defined
as: RE(q) = |f̂(q)− f(q)|

f(q) where f̂(q) denotes the estimated answer of query
q, and f(q) denotes the real answer of query q. Given a set of queries Q =
{q1, q2, . . . , qn}, the ARE is calculated by ARE(Q) =

∑n
i=1 RE(qi)

n .
– Intersection accuracy (IA) [13]: measures the accuracy of the top-k heavy

nodes reported by a sketch. Let X be the set of reported top-k heavy nodes,
and Y be the set of ground truth top-k heavy nodes. The IA is formulated as
IA = |X∩Y |

k .
– Normalized discounted cumulative gain (NDCG) [7]: measures the

quality of a ranking. Given a ranking list of heavy nodes reported by
a sketch, discounted cumulative gain (DCG@k) is defined as DCG@k =

1 https://github.com/Puppy95/Graph-Stream-Sketch.
2 http://konect.cc/networks/lkml-reply.
3 http://konect.cc/networks/prosper-loans.
4 http://konect.cc/networks/facebook-wosn-wall.

https://github.com/Puppy95/Graph-Stream-Sketch
http://konect.cc/networks/lkml-reply
http://konect.cc/networks/prosper-loans
http://konect.cc/networks/facebook-wosn-wall

392 D. Li et al.

∑k
i=1

r(i)
log2(i+1) , where r(i) denotes the relative score of the ith node in the

ranking list and it belongs to {0, 1}. If the ith node in the ranking list is indeed
a heavy node, r(i) will be 1; otherwise, it will be 0. Using the definition above,
NDCG@k is formulated as NDCG@k = DCG@k

IDCG@k , where IDCG@k repre-
sents the DCG@k of an ideal ranking list obtained by sorting the nodes in the
ranking list in descending order with respect to their relative scores. Thus,
NDCG ranges in [0, 1], which can be used to evaluate the ability to find top-k
heavy nodes of graph sketches (the higher the better).

5.2 Numerical Results

We analyze the performance for edge query and node query of different sketches.

Edge Query. Figure 6 shows the change of edge query’s ARE in TCM, GSS,
and our proposed DGS. As can be seen, with the increase of updated edges, the
ARE of edge queries in fixed-size sketches (TCM and GSS) grows drastically.
For high compression ratio (compression ratio = 1/160) in TCM and GSS, the
ARE of edge queries in dataset lkml-reply is 2.032 and 5.691 after 25% edges
updates, and it grows to 14.022 and 28.714 after 75% edge updates, respectively.
The performance of TCM (compression ratio = 1/40) and GSS (compression
ratio = 1/40) performs better, but they also suffer from high ARE from 75% to
100% edge updates. In contrast, the ARE of the proposed DGS is not sensitive
to the number of edge updates, and it outperforms the other algorithms signif-
icantly when the percentage of edge updates is larger than 50%. It verifies the
effectiveness of variable-size graph sketch for edge query.

(a) lkml-reply (b) prosper-loans (c) facebook-wosn-wall

Fig. 6. The ARE of edge queries.

Node Query. We evaluate the ability to find top-k heavy nodes of DGS as well
as TCM. We do not conduct this experiment on GSS since GSS does not support
heavy node query. The results are shown in Fig. 7 and Fig. 8. As shown in Fig. 7,
when the size of TCM is small, i.e., with compression ratio 1/160, the intersection
accuracy falls down to 24% in some cases. For larger sketch size, i.e., TCM(1/40),
the performance improved. In the figures, TCM(ideal) means we set a sufficient
large memory size for TCM, which is as large as the final size of DGS. Although

Learning-Based Dynamic Graph Stream Sketch 393

TCM(ideal) achieves the best accuracy in finding top-k nodes, we emphasize
that it is hard to set a proper size for TCM at initialization since the size of
the incoming graph stream is unknown. As shown in Fig. 7, DGS achieves an
intersection accuracy of 85%, 85%, and 80% in the task of finding top-20 heavy
nodes on data set lkml-reply, prosper-loans, and facebook-wosn-wall respectively,
which outperforms other situations significantly, and it performs very close to the
TCM(ideal) situation. This illustrates that our proposed dynamic graph sketch
expansion algorithm is effective and able to keep the performance always at a
high level.

We also calculate the NDCG based on the result list of top-k heavy node
query. The results are shown in Fig. 8. Similarly, the NDCG is worse for pre-
defined fixed-size TCM(1/160) and TCM(1/40). Again, DGS outperforms other
situations and it performs very close to TCM(ideal).

(a) lkml-reply (b) prosper-loans (c) facebook-wosn-wall

Fig. 7. Heavy node query (intersection accuracy)

(a) lkml-reply (b) prosper-loans (c) facebook-wosn-wall

Fig. 8. Heavy node query (NDCG)

6 Conclusion

In this paper, we proposed Dynamic Graph Sketch (DGS), a novel framework
for large-scale graph stream summarization. Unlike conventional graph sketches
that used fixed-sized memory, DGS adopted an expandable-size design to avoid
performance drop after a large number of edge updates. DGS introduced a deep
neural network to actively predict the query error of the graph sketch. If the
predicted error exceeded a pre-defined threshold, it used a convolutional neural

394 D. Li et al.

network to learn to expand its memory size and hash space. Extensive experi-
ments based on three real-world graph streams showed that the proposed method
is able to achieve high accuracy for different kinds of graph queries compared to
the state-of-the-arts.

References

1. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy,
M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45465-9 59

2. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

3. Estan, C., Varghese, G.: New directions in traffic measurement and accounting:
focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst. 21(3),
270–313 (2003)

4. Gou, X., Zou, L., Zhao, C., Yang, T.: Fast and accurate graph stream summariza-
tion. In: 35th IEEE International Conference on Data Engineering (ICDE 2019),
pp. 1118–1129 (2019)

5. Guo, Y., et al.: Closed-loop matters: dual regression networks for single image
super-resolution. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 5406–5415 (2020)

6. Hsu, C., Indyk, P., Katabi, D., Vakilian, A.: Learning-based frequency estimation
algorithms. In: 7th International Conference on Learning Representations (ICLR
2019) (2019)

7. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

8. Khan, A., Aggarwal, C.C.: Query-friendly compression of graph streams. In:
Kumar, R., Caverlee, J., Tong, H. (eds.) 2016 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM 2016), pp.
130–137 (2016)

9. Liu, L., et al.: Sf-sketch: a two-stage sketch for data streams. IEEE Trans. Parallel
Distrib. Syst. 31(10), 2263–2276 (2020)

10. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Annual Conference on Neural Information Processing Systems (NeurIPS
2019), pp. 8024–8035 (2019)

11. Shi, W., et al.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1874–1883 (2016)

12. Tang, L., Huang, Q., Lee, P.P.C.: Mv-sketch: a fast and compact invertible sketch
for heavy flow detection in network data streams. In: IEEE Conference on Com-
puter Communications (INFOCOM 2019), pp. 2026–2034 (2019)

13. Tang, N., Chen, Q., Mitra, P.: Graph stream summarization: from big bang to big
crunch. In: Proceedings of the 2016 International Conference on Management of
Data (SIGMOD 2016), pp. 1481–1496 (2016)

14. Zhang, M., Wang, H., Li, J., Gao, H.: Learned sketches for frequency estimation.
Inf. Sci. 507, 365–385 (2020)

15. Zhao, P., Aggarwal, C.C., Wang, M.: gSketch: on query estimation in graph
streams. Proc. VLDB Endow. 5(3), 193–204 (2011)

https://doi.org/10.1007/3-540-45465-9_59

	Learning-Based Dynamic Graph Stream Sketch
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Learning-Based Dynamic Graph Sketch Mechanism
	4.1 Learning-Based Error Detection
	4.2 CNN-Based Graph Sketch Expansion

	5 Performance Evaluation
	5.1 Experimental Environment
	5.2 Numerical Results

	6 Conclusion
	References

